On a nonlinear differential-integral equation for ecological problems
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On a Nonlinear Integral Equation without Compactness
The purpose of this paper is to obtain an existence result for the integral equation u (t) = φ (t, u (t)) + ∫ b a ψ (t, s, u (s)) ds, t ∈ [a, b] where φ : [a, b]×R → R and ψ : [a, b]× [a, b]×R → R are continuous functions which satisfy some special growth conditions. The main idea is to transform the integral equation into a fixed point problem for a condensing map T : C [a, b] → C [a, b]. The ...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملNontrivial Solutions for Boundary Value Problems of Nonlinear Differential Equation
The nonlinear three-point boundary value problem { −u′′(t) = f(t, u(t)), t ∈ I, βu(0)− γu′(0) = 0, u(1) = αu(η), is discussed under some conditions concerning the first eigenvalue corresponding to a special linear operator, where I = [0, 1], η ∈ (0, 1), α, β, γ ∈ [0,∞) with β + γ 6= 0, f : [0, 1] × (−∞,+∞) → (−∞,+∞) is sign–changing continuous function and may be unbounded from below. By applyi...
متن کاملOn the collocation method for a nonlinear boundary integral equation
In this paper we study a potential problem with a nonlinear boundary condition. Using the Green representation formula for a harmonic function we reformulate the nonlinear boundary value problem as a nonlinear boundary integral equation. We shall give a brief discussion of the solvability of the integral equation. The aim of this paper, however, is to analyse the collocation method for finding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1978
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700008911